
Deep Learning methods for 3D

segmentation of neural tissue in EM

images

Benjamin Eisner

An Undergraduate Thesis

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Bachelor of Science in Engineering

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Sebastian Seung

May 5, 2017

ii

c© Copyright by Benjamin Eisner, 2017.

All rights reserved.

Abstract

Current state-of-the-art methods in the 3D segmentation of EM stacks typically

rely on a multi-stage processing of input data. Roughly, data processing consists

of: acquistion, realignment, preprocessing, representation transformation, and post-

processing. While most techniques strive to be fully automatic in each of these

stages, errors inevitably occur. When they occur, they must be manually corrected;

otherwise the errors will inevitably propogate through the rest of the pipeline to

the detriment of the output segmentation. In this paper, we will explore various

methods of improving accuracy at two of the stages: image transformation, and

realignment. Specifically, we explore deep-learning based approaches that maximize

image transformation performance on well-aligned data, and then explore various

methods of learned realignment to make processing robust to misalignment. We find

that while hand-crafted alignment methods currently outperform learned alignment

methods, the training results suggest that further exploration of more sophisticated

learned realignment schemes could potentially outperform hand-crafted methods.

Additionally, we release a modular segmentation framework, DeepSeg, that allows

for automatic segmentation of EM datasets and provides a flexible way to experiment

with different techniques.

iv

Acknowledgements

There are a great number of people who were either direct or indirect contributors

to the creation of this thesis, and I would be remiss if I failed to mention every single

one.

First and foremost, to my adviser Professor Sebasian Seung, for finding 2 hours

every week to guide and mentor me and our thesis group. Your input was invaluable

(as was your generous support for acquiring compute resources!). There is no way

any of us could have made any headway on the segmentation problem without you.

I’ve learned more in these two semesters of being your advisee than I have in any

class at Princeton; for that I am truly grateful.

To Kisuk Lee, for knowing the answers to my questions before I even asked them,

and for providing guidance to our group. I aspire to one day know as many tricks

about training neural nets as you do.

To the members of the Seung Lab: Ignacio Tartavull, Dodam Ih, Jonathan Zung,

and William Wong. Thank you for your inexhaustable willingess to help our group

understand the subproblems in the segmentation task, and for being available at

altogether unreasonable hours to answer our Slack questions.

To the non-Frank members of my thesis group: Sharon You, Evelyn Ding, and

Nathan Lam. You picked up my slack when I had unproductive weeks, you helped me

debug my learning problems, you made me laugh when our work was overwhelming,

you put up with (and helped me combat) my compulsion to work on infrastructure

rather than actual research. Without you all, there would be no thesis. I’m so glad

we grew so close this year.

v

To Frank Jiang, my roommate, my thesis groupmate, and one of my very

best friends. We have been through so much together these last 4 years since the

Bloomberg 3rd floor lounge: we’ve roomed together at Princeton every year since

Sophomore year, lived in Lisel’s windowless room together in Park Slope, studied

abroad in London together, traveled Europe together, and generally found that

our education/career goals had converged completely. You’re one of the smartest

people I know, and always willing to drop whatever you’re doing to work on a hard

problem. I don’t know what I’m going to do without you next year, bud.

To Benjamin “Careful Danger” Leizman, for your endless support and bottomless

friendship. We’ve been around the block together, and you’ve always been there for

me when I needed you. You’re a class act, and I love ya, man.

To Keith Gladstone for inspiring me on a daily basis with your hopeless, hopeless

romanticism.

To the group message formerly known as edges2cats (Elias Rubin, Vlad Feinberg,

Thomas Hartke, and Keith), for wasting my time with pointless conversations that

somehow I always thoroughly enjoyed.

To the Cloister Lifeguards, for being one of the most consistent, cohesive groups

of people I’ve ever had the pleasure to call my friends.

To my T8 Fam and my Sympeeps, for being the most fun I’ve had at Princeton,

hands down. I would have snapped my laptop in two if I didn’t have dance this year.

To my second reader, Professor Thomas Funkhouser, for taking the time to read

70+ pages about this thing I did.

vi

To Sebastian Riedel, Tim Rocktschel, and Isabelle Augenstein for exposing me

to learning with TensorFlow long before I started this project.

To the Princeton Office of Stewardship and the Princeton Office of Financial Aid:

I certainly would not be here without the extremely generous financial aid grants

I’ve received.

And, last but not least, to my parents. Mom and Dad, you taught me everything

I know. You set me up for success at every turn, and always provided me so much

love and support. I love you both immensely. I hope I’ve made you proud.

vii

To my parents.

viii

Contents

Abstract . iv

Acknowledgements . v

List of Tables . xii

List of Figures . xiii

1 Introduction 1

1.1 Overview of Contributions . 2

1.2 Motivation . 3

1.3 Related Work . 6

1.3.1 Connectomics . 6

1.3.2 Image Segmentation . 6

1.3.3 EM Segmentation . 7

1.4 EM Segmentation Pipeline . 8

1.4.1 Image Acquisition . 9

1.4.2 Preprocessing . 11

1.4.3 Image Transformation . 15

1.4.4 Postprocessing . 21

ix

1.4.5 Segmentation/Downstream Processing 23

2 The DeepSeg Framework 24

2.1 Overview . 26

2.2 Pipeline Specification . 26

2.3 Handling Diverse Datasets and Label Types 27

2.4 Dataset Sampling . 28

2.4.1 Augmentation . 28

2.4.2 Parallelization . 29

2.5 Preprocessing . 29

2.6 Image Transformation . 29

2.6.1 Model Definition . 30

2.6.2 Model Training . 31

2.7 Postprocessing . 32

2.8 Ensembling . 33

2.9 GPU Acceleration and Portability . 33

3 2D Segmentation 35

3.1 Task Definition . 35

3.2 Evaluation Metrics . 37

3.3 Models . 37

3.4 Dataset . 39

3.5 Training . 39

3.6 Results . 41

x

4 3D Segmentation 44

4.1 Task Definition . 44

4.2 Evaluation Metrics . 46

4.3 Models . 46

4.4 Dataset . 49

4.5 Training . 50

4.6 Results . 51

5 Alignment 58

5.1 Task Definition . 59

5.2 Evaluation Metrics . 60

5.3 Models . 61

5.4 Dataset . 63

5.5 Training . 63

5.6 Results . 64

6 Conclusion 66

A Metric Definitions 70

A.1 Pixel Error . 70

A.2 Rand Score . 70

A.3 Cross Correlation . 72

A.3.1 Smoothed Version . 72

Bibliography 73

xi

List of Tables

3.1 Results of 2D Segmentation . 41

4.1 Results of 3D Segmentation on various datasets 56

xii

List of Figures

1.1 A general outline of the EM segmentation pipeline 9

1.2 Examples of defects in the imaging process. 11

1.3 A prototypical Fully Convolutional Neural Network 16

1.4 A prototypical U-Net . 18

1.5 A prototypical Residual Net . 19

3.1 An example of 2D boundary detection 36

3.2 The N4 architecture used for 2D segmentation 38

3.3 The VD2D architecture used for 2D segmentation 38

3.4 Training curves for 2D segmentation 42

4.1 An example of a 2D cross-section of a 3D segmentation 45

4.2 The VD2D-3D architecture for 3D Segmentation. 47

4.3 The UVR-Net architecture for 3D Segmentation 48

4.4 Training curves for 3D segmentation for SNEMI3D 52

4.5 Training curves for 3D segmentation for CREMI A 53

4.6 Training curves for 3D segmentation for CREMI B 54

4.7 Training curves for 3D segmentation for CREMI C 55

xiii

5.1 An example of a 3D stack of EM images that contains a misalignment 59

5.2 A prototypical Spatial Transformer Network 61

xiv

Chapter 1

Introduction

Reconstructing the human connectome at the neuron-level is a daunting task. It

would take a trained neuroscientist roughly 400 trillion hours to manually reconstruct

the 3D-geometry of an entire human brain from cell-level electron microscopy images

of brain tissue1. Considering that the universe has only existed for roughly 112 trillion

hours, it is unlikely that humans will ever manually reconstruct the entire human

connectome. And yet, knowing the entire neuron-level human connectome would

be eminently useful across the field of neuroscience. We can do better - not with

humans, but with machines.

1This is a rough lower-bound estimation, assuming that that it takes a neuroscientist roughly
one hour to reconstruct the geometry of a 6µm × 6µm × 200nm section of tissue and that the
average human brain has a volume of 1300cm3.

1

1.1 Overview of Contributions

This thesis is an exploration into various automated methods of reconstructing the

3D geometry of neural tissue through image segmentation. Specifically, we attempt

to increase the performance of existing automatic EM segmentation pipelines, both

in efficiency and accuracy, by exploring modifications at various stages of these

pipelines.

Throughout our initial exploration of existing EM segmentation methods, it be-

came increasingly clear that, since the output of one stage of the segmentation

pipeline feeds directly into the next, errors at any given stage will inevitably propa-

gate to later stages. There are generally two approaches to mitigating this propoga-

tion effect: reduce the errors introduced at any given stage (i.e. increase the accuracy

of an intermittent neural net), or make subsequent stages more robust to errors in

previous stages (i.e. add substantial augmentations to training, apply techniques

like Mean Affinity Agglomeration to segmentations). This thesis touches on both

categories of improvement.

While this thesis research was conducted in conjunction with several other under-

graduates, graduate students, and a professor in the Princeton Neuroscience Insti-

tute, this thesis will detail my individual contribution. Specifically, my contribution

can be broken up into three parts:

• The creation of the DeepSeg segmentation pipeline, a modular framework writ-

ten in Python that allows for easy training and prediction with current popular

models, as well as easy experimentation at different stages in the computational

pipeline.

2

• Experimention with several different architectures for transforming raw seg-

mentation images into affinity/boundary maps, attempting to improve overall

accuracy and noting their invariance to errors in earlier stages of the pipeline.

• Exploration of learned alignment strategies, both on learned transformations

and in an end-to-end setting.

1.2 Motivation

Understanding the cellular structure and connectivity of neural tissue is perhaps

the most important challenge in the field of computational neuroscience today. The

accurate generation of a complete neuron connectivity graph of a section of neural

tissue would allow researchers to answer a litany of fundamental questions about

neural activity at various scales. At the micrometer level, being able to generate

connectivity graphs gives us insight into how dense connections are throughout the

brain, answers quesions about local clustering and distribution of synapses, and

shows us how loosely or strongly coupled neurons can be.

At the millimeter scale, being able to reconstruct the topology and connectivity

in a small region of brain tissue would allow us to understand how entire neurons

interact with each other, and how clusters of neurons interact. This scale would

allow for queries into specific neural subsystems, especially in very small animals

(i.e. insects, small rodents), and perhaps allow us to understand the types of stimuli

that affect entire neurons.

3

At the centimeter scale, we can map the entire brain of small creatures, and

important structures within the human brain. A full map at this level would allow us

to query memory structures in small animals, simulate reactions to external stimuli in

the optical system, and examine the differences in neural structures between different

individuals (at smaller scales, it is difficult to find isomorphic sections of tissue).

Finally, mapping neural tissue at the scale of the human brain would allow us

to begin to be able to answer fundamental quesions about memory, consciousness,

and humanity. Given enough computational power, it might even be possible to

simulate a specific consciousness. This is quite a lofty goal, especially considering

the computational requirements, but advances in automated methods make these

tasks more and more plausible.

Conventionally, the structure of the brain is inferred from images, whether they

are thin slices of a brain imaged with an electron microscope, volumetric images ac-

quired using digital radiograhpy systems (i.e. fMRI, CAT, etc), or visible-spectrum

video of exposed brain tissue. Although these imaging technique generate informa-

tion at different resolution levels, they invariably present a huge data problem: when

researchers are presented with small-scale image data, it is fundamentally infeasible

to efficiently infer the connectivity and structure of a small cluster of neurons by

hand, let alone an entire brain or nervous system, simply because the amount of

neurons in a brain is too large. For several decades now, researchers have had the

capability to manually reconstruct the 3D geometry of tissue in tissue volumes at the

micrometer scale[24]. However, to get to larger scales within acceptible time frames,

more automated methods are necessary.

4

Many attempts have been made to automate the process of inferring connectivity

and topology from images using various algorithmic and machine learning models.

In the past five years or so, many of the most successful attempts at this class

of problems have utilized Convolutional Neural Networks (CNNs) to achieve their

high performance. The goal of this year-long project is to explore many of the

different CNN-based approaches that have gained recognition in the past few years

in several sub-problems, evaluate their performance and enumerate their deficiencies,

and attempt to design new architectures that achieve improved performance in these

sub-problems. In addition to increasing performance on established benchmarks,

we also make contributions on new sub-problems for which there are no established

benchmarks.

The motivation for the research in this field is to better understand the connec-

tivity of neural tissue. Since this is such a broad goal, it stands to reason that there

are a number of intermediary sub-problems that can be tackled to learn about con-

nectivity. Several of the sub-problems have been heavily studied, and various public

competitions have been organized that provide labeled training data and unlabled

test data, encouraging competitors to achieve maximum performance against a cer-

tain benchmark. As we developed our models, we evaluated their performance on

local train sets and submitted their predictions to several of these open competitions,

often performing well.

5

1.3 Related Work

1.3.1 Connectomics

The problem of determining the connectivity of a brain falls in the sub-field of con-

nectomics, which has been a lively area for research for over 30 years. The first full

connectome of an organism was created in 1986, producing the mapping of the brain

of C. elegans [24]. Since then, partial and full topological and connectivity maps

have been created on various organism, often using electron microscopy and careful

hand-reconstruction to do so. One group of researchers from the Allen Institute for

Brain Science was able to use the presence of flourescent proteins to construct a

cellular-level connectome of a mouse brain (although not at the level of accuracy to

reconstruct a true weighted graph of the connectome)[21]. Other researchers have

been able to automatically reconstruct certain cell structures at nano-resolution[14].

More recently, by genetically modifying organisms to produce proteins that become

phosphorescent in the presence of calcium (calcium is released across the synapse

between a dendrite and an axon when a neuron is fires), researchers have been able

to monitor both brain activity and neural structure using video photography in the

visible spectrum [20].

1.3.2 Image Segmentation

As the field of connectomics has matured, it seems to have coalesced around the idea

that taking electron microscopy images of neural tissue and then performing image

segmentation on those images is likely the most promising strategy for acquiring

6

high-resolution neuron graphs. Image segmentation has a long history in the field of

computer vision; being able to separate various components of an image has broad

applications, and much research been done on the subject. In the early 1980’s, state-

of-the-art methods of image segmentation techniques involved defining hand-crafted

features for local structures within images in order to perform segmentation[9]. In the

late 1990’s and early 2000’s, methods began to examine more global image features.

For instance, Malik and Shi demonstrated that the segmentation problem could be

formulated as a graph partitioning problem[13].

A huge breakthough in pixel-level image segmentation occured in 2015, when

Long et. al. showed that fully convolutional networks could be used to achieve

state-of-the-art semantic segmentation (where semantic segmentation means labeling

pixels based on the object that they represent)[16]. Since then, many groups have

improved on various techniques for various semantic segmentation domains[4].

1.3.3 EM Segmentation

Because of the acute interest in using EM segmentations to reconstruct neural tissue

(and a broader interest in segmenting biological images), many groups have success-

fully applied segmentation techniques catered specifically to this task. In the early

2010’s, a group of researchers published an open dataset and created a global chal-

lenge to use machine learning methods to label neurons in 2D image slices of a brain,

resulting in the creation of models with near-human accuracy [3]. The first success-

ful convolution-based model to perform well on this task was the N4 architecture,

a fully-convolutional approach to segmentation released in 2012[7]. Many subse-

7

quent approaches have drawn on the success of N4’s fully-convolutional architecture,

including VD2D, and more intricate architectures like Multicut and U-Net[5, 22].

In the 3D Segmentation domain, significant progress has been made following

the ISBI 2013 SNEMI3D challenge[2], which challenged entrants to segment 3D EM

stacks. Prior to this, it was shown that using convolutional nets to predict 3D

affinities could lead to accurate segmentation[23]. The aforementioned convolutional

models have all been adapted and extended into the 3D domain, with architectures

including VD2D-3D[15], 3D U-Net[6], and V-Net[19]. Other challenges with different

types of data, including CREMI 2016, have also spurred model development[8].

1.4 EM Segmentation Pipeline

So far, we have referenced ”EM Segmentation Pipeline” as a process that converts

raw EM images into 3-dimensional segmentations of the structures those images

represent. There are several computational stages of this pipeline, and in order to

understand how altering the pipeline will affect overall performance it is necessary

to explain in detail the various components of this pipeline. While different seg-

mentation techniques may use some subset or superset, the pipeline I outline below

is a general conceptual representation of what most state-of-the-art segmentation

schemes utilize.

The EM Segmentation Pipeline can roughly be separated into five components,

shown visually in Figure 1.1:

8

Figure 1.1: A general outline of the EM segmentation pipeline. The lower set of
images represent intermediate stages that the data takes on during processing. In
this example, the images are first acquired through some sort of electron microscopy
technique (typically ssTEM). Second, they undergo preprocessing, which is primarily
realignment of slices that were disrupted in the imaging process. Third, a learned
transform is applied, which in this case transforms the stack of images into an affinity
map. Fourth, postprocessing is applied, which in this stage is computing an actual
segmentation from the predicted affinities. Fifth, geometric segmentation is inferred
from the pixel segmentation, and the data is ready for use in a downstream task.

1.4.1 Image Acquisition

Given a physical volume of neural tissue, the first task in inferring tissue struc-

ture is to acquire some sort of digital representation of this tissue. While there are

many techniques available for imaging biological tissue (e.g. light microscopy, elec-

tron microscopy, radiography, magnetic resonance imaging), typically the only way

to acquire a representation of cell-level structures is by using a tunnelling electron

microscope (TEM)[18]. Before imaging, samples undergo considerable preparation:

typically, they are embedded in a rigid medium that will allow them to be sliced with

minimal distortion; additionally some sort of stain is applied to the tissue that affects

the electrical properties of different biological structures, allowing for high-contrast

9

imaging. The result is a set of slices of neural tissue, 30-50nm thick, that can be

independently imaged in the TEM. When positional order from slicing is combined

with the raw image data (which takes the form of grey-scale images, as opposed to

RGB or CMYK images), each individual value can be treated as a voxel, since it is

indexed by three orthogonal coordinates. Important to note is that these voxels are

anisotropic, meaning that they are larger in the z-dimension than they are in the

x-y dimension. This introduces a computational complexity that can somewhat be

compensated for at later stages of the pipeline.

Although the actual performance of this physical imaging process is far ouside

the scope of this thesis, we mention the physical steps involved because the methods

used in preparing and imaging biological slices have immediate consequences on the

quality of the data that is fed into stages of the pipeline in which we are primarily

interested. Because the imaging process is physical and involves structures at nano-

scale, physical preparation of the sample can introduce various defects into the slices

that show up in resulting images. The staining process, for instance, can inconsis-

tently vary contrast throughout an image, and can produce large dark blotches in

an image. The slicing procedure can create tears and folds in tissue, which manifest

as discontinuities in the images, and can even physically translate slices hundreds of

nanometers. And since neural tissue naturally contains significant quantities of wa-

ter, samples are prone to dry inconsistently, resulting in elastic warping of cell-level

structures (like a rubber sheet that has local stretching). Visual examples of some

of these artifacts can be found in Figure 1.2.

10

Figure 1.2: Examples of defects in the imaging process. Left: a properly stained
and imaged segment. Center: a slice where inconsistent staining or another artifact
has left a large dark spot on the image. Right: a slice that was prepared in such
a way that the microscope couldn’t produce a sharp image, either during slicing or
focusing.

These deformations caused by the imaging process can have drastic implications

in the performance of later stages of the pipeline, especially when those stages aren’t

explicitly corrected for. We noticed that even slight misalignments in image data

caused ultimate segmentation performance to noticably suffer. Later in the pipeline

we will explore various techniques that can be used to make the pipeline more robust

to these inevitable imaging defects.

1.4.2 Preprocessing

Once volume data is acquired, data usually will undergo any of several preprocessing

techniques to prepare it for later stages of the pipeline. The scope of preprocessing

and types of data transformations performed vary depending on the robustness of

later stages of the pipeline, as well as requirements on the output of the segmentation

pipeline. Preprocessing is generally treated as distinct from subsequent stages of

11

the pipeline because the transformations often keep the data in the same domain

of values, and maintain the data representation. In other words, both the input

and the output of preprocessing take the form of stacked EM images. Typically,

preprocessing will include some form of image adjustment and stack realignment.

Image adjustment can be as simple as altering the contrast on individual images,

or making contrast uniform across the entire stack. While these adjustments will

typically improve segmentation results, most modern deep learning techniques (which

are liberally used in the subsequent pipeline stage) are easily trained to be quite

robust with respect to level differences between images, so a rigorous exploration of

image adjustment techniques would likely yield marginal gains in accuracy.2

The same cannot be said for image alignment. The defects and imprecisions intro-

duced in the actual imaging process can severly impact segmentation performance,

particularly because they introduce three-dimensional discontinuities that make it

difficult for many neural networks to trace continuous segments across slices. Thus,

automatic stack alignment is an active area of research.

At its heart, the alignment problem is one of misrepresentative data. Ideally we

would like each ’voxel’ to spatially correspond to a true volume in the sample, and

for a voxel’s position in the the data to correspond to its true position within the

greater sample. The defects in the imaging process taint this mapping, and we are

left with a dataset that, when taken literally, misrepresents the physical volume from

which it was derived. Thus, the task of realignment is to take this noisy data and

distort it in some way so that it more accurately corresponds to the original volume.

2Training speed, however, could potentially see significant improvements, as a neural net would
have to learn fewer functions if its input were more uniform

12

While there are many theoretical ways of registering two images (registration

here means alignment and distortion so that their features align accurately), most

modern methods rely on establishing points of correspondence between two or more

images, and distoring the images such that those points of correspondence end up

at the same x-y coordinate in all images. It is generally believed that, given a high

enough density of true correspondences throughout a stack, one can transform the

data into a form that is pixel-for-pixel accurate with respect to the actual cellular

structure of a sample.3 The transformations themselves can be parameterized as

elastic transforms, which provide discrete interpolation for all voxels not labeled as

correspondences.

The problem, then, lies in actually determining these correspondences with high

accuracy and high enough density for sample-accurate registration. One popular tool

for achieving rough correspondences is TrakEM2, which provides functionality for reg-

istering generic images using a combination of the Scale Invariant Feature Transform

(SIFT) and a global optimization [17]. This algorithm uses no learned or otherwise

domain-specific knowledge, and is widely used across computer vision applications

to stitch arbitrary images together. This process is sufficient for establishing rough

correspondences, but the noisy and varied nature of cellular structures means that,

without any more domain-specific correspondence labeling the resulting image reg-

istration on a moderately distorted dataset will likely not result in transformations

that are smooth or accurate.

3Intuitively, this makes sense, since structures within cells are physically connected, our notion
of correspondence is essentially a description of how these structures are physically connected.

13

The Seung Lab’s current realignment techniques attempt to use domain-specific

techniques to achieve correspondence. These techniques are typically hand-designed

filters that draw on domain knowledge of the consitution of EM slices of neural tissue,

and require a non-trivial amount of hand-tuning when applied. To compute a realign-

ment, first a sparse set of correspondences are made at the macro level, and a rough

realignment is iterateively computed (the rationale being that iteratively comput-

ing many fine realignments has slow convergence and is computationally infeasable).

Following this rough realignment, a much more granular set of correspondences are

computed, and the stack is iteratively deformed a small number of times to com-

pute a smooth, converged registration. This technique is quite effective, and leads

to near-perfect registration, but requires a substantial amount of trained human in-

put to determine both the parameters for the various correspondence filters and to

correct obviously incorrect correspondences.

A more desirable approach would be to use machine learning to train a large set of

filters (more specific ones than humans could compute) to predict correspondence at

different levels of granularity. This is an active area of research within the Seung Lab.

Alternatively, machine learning could be used to learn the actual parameters for a

piecewise affine or elastic transform, rather than learn filters to predict corresponence,

although as we demonstrate in Chapter 5 this is potentially quite difficult.

Again, it is worth noting that failures in preprocessing to compensate for errors

in the imaging stage - as well as new artifacts introduced in the preprocessing stage

- will be propagated through the remainder of the pipeline, and can only have a

negative or neutral impact on segmentation performance.

14

1.4.3 Image Transformation

The image transformation stage of the segmentation pipeline can loosely be defined

as any set of transformations that compute a representation of the sample that is

different in kind from a set of aligned images. In the case of most of the models

discussed in this paper, the image transformation stage converts a stack of EM

images into a 3D pixel-wise affinity map, where the labels at each pixel represent the

probability that that pixel is in the same cellular body as the adjacent pixel in the

x, y, and z direction. For other segmentation schemes, like Google’s Flood-Filling

architecture, the transformation output is a direct segmentation.

This stage is perhaps the most well-explored in the pipeline for neural segmen-

tation. While in the past hand-crafted or generic techniques were used in this stage

to some degree of success (i.e. selective thresholding, hand-crafted filters, etc), most

state-of-the-art techniques utilize some sort of machine learning scheme to learn the

output representation, usually a neural net architecture that utilizes many successive

convolutions to predict each pixel (or a small patch) of the output segmentation.

These pixel/patch predictions can be stitched together to make a prediction on a

whole stack. These ML approaches are typically supervised, and rely on using large

datasets annotated with segmentations for training. Thus, as in most deep learning

applications, the size and diversity of the training set is one of the most important

factors in maximizing the generalization performance of this stage of the pipeline.

Because large, high-quality, labeled EM datasets are hard to come by (see the

second sentence of this thesis), most researchers will take a reasonably-sized dataset

and randomly apply data augmentations that make the data look like fresh data,

15

Figure 1.3: A prototypical Fully Convolutional Network, with successive convolu-
tional layers followed by pooling layers. Depending on the types of convolution
layers, the size of the input may be much larger than the size of the output, implying
that the field of view for each pixel in the output could be greater than 1.

thus artificially expanding the size of the dataset. These augmentation techniqes can

broadly categorized as either affine transforms or elastic transforms. Specifically,

researcher will usually introduce some sort of scaling, rotation, shearing, and elastic

warping to both the image stack and the labels. These techniques have an enormous

impact on accuracy and generalization - empirical evidence of this is provided in

Chapter 3.

The specific network architectures that are used in this stage of the pipeline are

quite varied. We will describe the general classes of architectures relevant to our

exploration here, and will revisit specific architectures we used later in this paper.

Additionally, it is worth noting that elements of various architectures listed below

can be combined (i.e. adding residual connections to standard convolutional nets.)

16

Standard Convolutional Networks

The most conceptually simple type of network that is used is the standard convolu-

tional network, depicted in Figure 1.3. Standard convolutional nets typically involve

several successive convolutions with small filters (e.g 3x3x3 filters) that perform ei-

ther ’valid’ or ’same’ convolutions, which are differentiated by the size of the output

of the convolution. After each convolution, a nonlinearity (e.g. ReLU) is applied,

and every so often pooling layers are interspersed to alter the scale of the under-

lying feature maps. At the end of these alternating convolutions and poolings is a

prediction, often the output of a sigmoid, that predicts a single pixel or patch of

boundaries (or affinities, in the 3D case). Depending on the number of convolutions

and poolings, the output pixel is determined by pixels within a certain field of view

in the input image - that is, if one were to mathematically unroll the convolutions

and poolings, only a certain number of pixels in the input image would be used to

compute the prediction in the output image. In the N4 architecture applied in 2 di-

mensions, for instance, each pixel in the output prediction is influenced by pixels in

a bounding box of 96x96 pixels. Architectures that are primarily Standard Convolu-

tional Networks include N4 (2-dimensional), VD2D (2-dimensional), and VD2D-3D

(3-dimensional)[7, 15].

U-Net

U-Net style architectures closely resemble autoencoders, in that they compress a rep-

resentation of an input using convolutions and poolings, and then decompress that

representation using convolutions and up-convolutions. However, instead of trying

17

Figure 1.4: A prototypical U-Net, with successive convolutional layers followed by
pooling layers on the downward pass, and then successive convolutional layers fol-
lowed by up-convolutions on the upward pass. Notice how the inputs to each convo-
lution after an up-convolution also takes as input the output of the last convolution
of the corresponding layer in the downward pass.

to predict a perfect reconstruction of the input, the U-Net architeture attempts to

reconstruct boundaries/affinities for the input image. One key feature of U-Nets is

the symetrical use of skip connections - for every convolutional layer on the com-

pressive (downward) pass, the output of those convolutions is added to the input of

corresponding convolutional layers on the decompressive (upward) pass. This serves

to force the net to quickly learn a set of affinities that look like the input. Much

like Standard Convolutional Networks, every pixel in the output patch of a U-Net

architecture can be affected by pixels in a certain field of view in the original input -

18

Figure 1.5: A prototypical Residual Net, which has a similar structure to the Fully
Convolutional Network. The major difference is the skip connections - the residual
connections - are added right before the nonlinearity but after a convolution. Resid-
ual connections can be added to other architectures to achieve some of the properties
of this network.

modifying this field of view can often modify the quality of the results. Empirically,

the predictions of U-Net architectures tend to be significantly smoother than fully

convolutional architectures (although they may not be more accurate). A prototyp-

ical U-Net can be seen in Figure 1.4. Architectures that are primarily based on the

U-Net style are the original U-Net (2 dimensional), 3D U-Net (3 dimensional), and

V-Net. SegNet also resembles the U-Net architecture, in drawing inspiration from

the autoencoder paradigm[22, 6, 19, 4].

Residual Nets

Residual Networks draw on a similar idea as U-Net, in that convolutional layers

should be able to directly influence layers that do not directly follow them in the

architecture[10]. As shown in Figure 1.5, Residual Nets add skip connections that

jump over one (or more) sets of convolutions. Deeper nets are, in general, quite

19

difficult to train, and the use of residual connections often increases the speed of

training for deeper architectures.

Flood-Filling Networks

Flood-Filling Networks (FFNs) take a different approach to the prediction task.

Rather than predict whether a pixel in the output is a boundary or not on a given

input, FFNs are given an input patch and an x-y coordinate, and output a pixel

mask for that patch that represents whether a pixel in the output is in the same

body as the input x-y coordinate[12]. If a particular object is sampled such that the

output patches completely cover the object, a full segmentation of that object can

be achieved (successive sample patches are chosen by a recurrent neural net (RNN)).

Typically, this map is predicted with several convolutions, although architectures

are varied. While we will not explore FFNs any further, as they are outside the

scope of the research presented in this paper, they are noteworthy in that directly

predict segmentation, rather than an intermediate (and thus require substantially

less postprocessing than other menthods).

Typical Errors

The errors made by neural networks in the Image Transformation stage (and ulti-

mately affect the accuracy of the resulting segmentation) tend to fall into several

categories: split errors, merge errors, and incorrect object shaping. These errors are

somewhat self-explanatory. Split errors occur when networks predict intermediates

that, when converted into a segmentation, incorrectly split a body into two distinct

20

segments when it should be one. Similarly, merge errors occur when two distinct ob-

jects are labeled as the same object. Incorrect object shaping occurs when the output

of the network incorrectly predicts boundaries that may not necessarily cause merge

or split errors, but simply predict boundaries that are too thick or otherwise en-

croach on the true shape of the object. These sorts of errors can be mitigated either

by altering network architecture, or through postprocessing.

Important to note is the fact that the quality of the input data has a huge effect

on the quality of the output data. While data augmentations during training can

help networks compensate for misaligned data, generally inputs that are well-aligned

will result in significantly better predictions than those that are poorly aligned. It is

difficult to completely correct for this at the Image Transformation stage, which is

why we stress the importance of the Preprocessing stage in preparing data well for

segmentation.

1.4.4 Postprocessing

Once the EM stack data has been transformed into an intermediate form (i.e. bound-

aries/affinities, or segementation in the case of Flood-Filling Networks), postprocess-

ing is often applied. Postprocessing can take on many forms, but often involve using

the intermediate form to prepare a segmentation. Given a boundary/affinity map,

there are many different ways to infer a segmentation of an image. However, we will

discuss two methods that are used in the Seung Lab to process boundaries/affinities

into segmentations.

21

Watershed Transform

The Watershed Transform is a standard computer vision algorithm for segmenting

images. Given an affinity graph, the algorithm treats the values of affinities as energy

values, which is analogous to the height of land in a geographical landscape. Since

pixels that belong to the same body have high affinity, the topological high-points

will be the bodies themselves, and the valleys will be the boundaries between bodies.

The watershed variant used in the Seung Lab identifies the plateaus (representing

distinct objects) and uses those identified plateaus to inform where to place basins

for the classical watershed algorithm. The algorithm then floods basins based on

a set of supplied parameters. This allows a distinct labeling of all pixels in the

image, where pixels in the same basin are given the same label. All bodies that

are too small to actually be distinct bodies are merged greedily. It is at this stage

where merge/split errors often manifest, since two basins could be split or merged if

there are discontinuities in an affinity boundary, or if non-cell-wall affinites are too

high. Selecting appropriate parameters for this task is paramount in finding a good

segmentation, and is typically performed empirically for a given dataset.

Mean Affinity Agglomeration

One way to mitigate some of the merge/split errors that arise from the Watershed

Transform’s intolerence of slightly imprecise affinities is to artificially heal the im-

perfections in boundaries that are generally correct. Mean Affinity Agglomeration

(MAA) is one way to do this. MAA iterates over boundaries between segmented

objects and greedily merges or splits them based on the mean affinity along the

22

boundary. In this way, inconsistent boundaries predicted by the Image Transform

stage can be healed.

1.4.5 Segmentation/Downstream Processing

Once postprocessing has occurred, the data is now in a completely segmented form.

The segmentation can then be used for downstream tasks. Theoretical applications

of segmentation include labeling different cells by their type, generating weighted

directed graphs that represent connections between neurons, and determining char-

acteristics of neurons in different types of tissue.

23

Chapter 2

The DeepSeg Framework

So far we have discussed the theoretical computational concepts that underpin the

EM segmentation pipeline, and realized that there are many nuanced computational

steps that flow into one another during the segmentation of an EM volume. Given

the algorithmic intricacy of the computational tasks, it stands to reason that any

software implementation of the computational tasks will be large and complex. Con-

ventional wisdom holds that a large and complicated software package is anathema

to a researcher attempting to experiment with, augment, and improve upon the tech-

niques implemented in that software package. Repeatability of experiments is also

critical to a researcher retaining his or her sanity, so a pipeline that is completely

automatic and is completely specified by a consolidated set of parameters is critical.

As our research group started building and modifying software to experiment

with different stages of the segmentation pipeline, it became painfully obvious that

as our codebase grew in size and complexity, it was becoming increasingly difficult

24

to alter the software without making major modifications across the codebase. So,

in order to avert collective anguish we decided to design a framework - which we

tentatively have named DeepSeg - with the following set of goals:

• to create a set of abstractions and interfaces that allow researchers to modify

or swap-out different components with minimal software-level impacts on the

functionality of other portions of the pipeline.

• to define abstractions for model development that are succinct and use domain-

knowledge about the problem to automatically connect to sampling mecha-

nisms during the training process.

• to be completely portable accross different machines and host environments,

and to automatically integrate with installed GPU hardware for training ac-

celeration.

On the technical level, DeepSeg is written in Python (with some Julia and C++

tools), and uses the NumPy package to represent and manipulate data throughout the

pipeline. All of the machine-learning components, particularly for model definition

and training, are built on top of the TensorFlow, Google’s popular, open-source deep

learning framework[1]. This was chosen because of its ease of use with Python, its

flexibility, and its automatic integration with GPUs via CUDA.

In the following subsections, we will describe the abstractions introduced in the

DeepSeg framework, and some of the underlying implementation details of these

abstractions.

25

Interested readers can explore the DeepSeg codebase at the following URL:

https://github.com/tartavull/trace/tree/beisner. Currently the framework

lives in the ”beisner” branch, but it will likely be merged with ”master” soon.

2.1 Overview

The driving concept behind the design of the system is being able to specify the entire

pipeline in one place. This includes specifying all dataset handling, preprocessing,

image transformation, and postprocessing procedures and parameters. Additionally,

for any components that require learning or optimization, training parameters and

inference specification are explicitly required. Because every non-parameter compo-

nent in the specified pipeline must adhere to specific interfaces (i.e. dataset samplers

must provide data samples of a specific size), components can be freely swapped out

in the specification with the knowledge not only that the pipeline will execute, but

the only meaningful difference in execution will occur at the altered component.

In terms of functionality, the framework provides both training and inference for

a specified pipeline. The training process automatically hooks into TensorBoard,

the TensorFlow training visualization tool, in order to monitor training progress.

The pipeline can automatically load trained models for inference tasks, and supports

exporting into formats accepted by various EM segmentation competitions.

2.2 Pipeline Specification

A pipeline can be completely specified with a set of parameter classes:

26

https://github.com/tartavull/trace/tree/beisner

• PipelineConfig: The main configuration class, which contains all other sets

of parameters, as well as which models are used, where to find datafiles, and

where to save results.

• TrainingParams: The set of parameters used in a training process, including

learning rate, optimizer, patch sample sizes, and batch sizes.

• AugmentationConfig: A set of booleans determining which augmentations to

use when sampling the dataset.

• InferenceParams: The set of parameters used when performing inference,

including how to assemble predictions on large images from smaller predictions.

A PipelineConfig object is passed to the Learner class, where all the relevant

componenets are connected.

2.3 Handling Diverse Datasets and Label Types

Currently, the framework supports several different datasets out of the box: the

ISBI 2012 EM boundary-detection dataset, the ISBI 2013 SNEMI3D EM segmenta-

tion dataset, and all the datasets provided by the CREMI 2016 EM segmentation

challenge. Prediction preparation tools are available to reformat the predictions on

test sets for submission to their respective leaderboards. The framework also sup-

ports arbitrary EM datasets of any reasonable size,1 and supports label inputs as

segmentations, boundaries, 2D affinities, and 3D affinities.

1Any dataset that fits in RAM.

27

Raw datasets are wrapped by classes that implement the Dataset interface (i.e.

CREMIDataset, SNEMI3DDataset, and ISBIDataset).

2.4 Dataset Sampling

The framework provides several different modes for sampling a specified dataset

during training or inference. For training, random samples of arbitrary shape can

be sampled, to which specified augmentations are applied. For inference, entire

validation and test sets can be sampled in formats that are appropration for feeding

into the pipeline.

2.4.1 Augmentation

The framework supports several type of random augmentation:

• Rotation: the entire stack can be rotated by a random angle.

• Flipping: the entire stack can be randomly mirrored along the x, y, or z axis.

• Blurring: individual slices within a stack can be arbitrarily blurred.

• Warping: individual slices can be warped via elastic deformation, to simulate

data that is structurally different from the underlying dataset.

All augmentations are parameterized within certain bounds. Additional augmen-

tations could theoretically be added to the pipeline with ease.

Sampling is primarily configured and executed by the EMSampler class.

28

2.4.2 Parallelization

For multi-core training environments, the framework parallelizes the sampling pro-

cedure, executing data sampling on multiple cores and adding the samples to a data

queue, which can be sampled at each training step. This considerably speeds up

training time when using GPUs, especially when the timing of the augmentation

procedure is non negligible with respect to the timing of an optimization step.

2.5 Preprocessing

The framework enables the specification of preprocessing procedures to be executed

before data flows into the Image Transformation stage of the pipeline. Currently the

type of preprocessing procedures is limited to realignment using Spatial Transformers

(anything that implements the SpatialTransformer interface) and standardization

(a.k.a. whitening) of data, but it would be simple to implement additional prepro-

cessing functionality.

2.6 Image Transformation

The framework allows clients to specify which type of image transformation should be

included in the pipeline. Currently, the only types of image transformations that are

directly implemented in the framework are variants of the Fully Convolutional Net

and the U-Net2. In general, the Image Transform stage must take a 5-dimensional

2RNN-based Flood-Filling Networks may be available soon.

29

Tensor (the fundamental datastructure used in TensorFlow) with a shape of [batch-

size, z-size, y-size, x-size, num-channels], and outputs a 5-dimensional Tensor with

a shape of [batch-size, z-size, y-size, x-size, [1-3]] containing the predictions on the

input data. The Image Transform must specify a predict function for inference.

2.6.1 Model Definition

There are only two broad classes of models currently supported: ConvNet(Fully

Convolutional Nets), and UNet(U-Nets). However, the framework provides a set

of primitives for each classes that allow for concise construction of nets with arbi-

trary structure, so long as they fit within the general paradigm of these two model

types. These architectures are specified by both the ConvArchitecture and the

UNetArchitecture classes, and are fed as parameters to the ConvNet and UNet

classes for construction and automatic integration into the pipeline.

Particularly useful is that both classes of models automatically calculate the field-

of-view of the models, and expose both the input and output shape to the pipeline so

that at training time and inference time no extra specification or Tensor-wrangling

must occur outside of the models. This means that to modify the architecture of

a net, one need only change its respective Architecture specification, and nothing

else. An example of an architecture specifcation for the 2-D N4 archetecture can be

found below:

1 N4 = ConvArchitecture (

2 model name=’n4 ’ ,

3 output mode=BOUNDARIES,

30

4 l a y e r s =[

5 Conv2DLayer (f i l t e r s i z e =4, n feature maps =48, a c t i v a t i o n f n=t f .

nn . re lu , i s v a l i d=True) ,

6 Pool2DLayer (f i l t e r s i z e =2) ,

7 Conv2DLayer (f i l t e r s i z e =5, n feature maps =48, a c t i v a t i o n f n=t f .

nn . re lu , i s v a l i d=True) ,

8 Pool2DLayer (f i l t e r s i z e =2) ,

9 Conv2DLayer (f i l t e r s i z e =4, n feature maps =48, a c t i v a t i o n f n=t f .

nn . re lu , i s v a l i d=True) ,

10 Pool2DLayer (f i l t e r s i z e =2) ,

11 Conv2DLayer (f i l t e r s i z e =4, n feature maps =48, a c t i v a t i o n f n=t f .

nn . re lu , i s v a l i d=True) ,

12 Pool2DLayer (f i l t e r s i z e =2) ,

13 Conv2DLayer (f i l t e r s i z e =3, n feature maps =200 , a c t i v a t i o n f n=t f

. nn . re lu , i s v a l i d=True) ,

14 Conv2DLayer (f i l t e r s i z e =1, n feature maps =1, i s v a l i d=True) ,

15]

16)

2.6.2 Model Training

Model training primarily occurs through the Learner class, which creates an opti-

mizer based on a model’s specified loss function (typically cross entropy), as well as

various parameters specified in TrainingParams. Every step, the Learner feeds a

training example from the queue into the model, runs the optimizer for one update

step, and executes any number of user-specified Hooks. These hooks will execute

31

every N steps, where N is specified by the user in the hook constructor. Hooks

provided include:

• LossHook: Report the loss for the model to TensorBoard every N steps.

• ValidationHook: Run inference on the validation set every N steps, and write

both validation scores and image predictions to TensorBoard.

• ModelSaverHook: Save the model variables to disk every Nsteps, so that the

model can be reloaded for inference.

• HistogramHook: Write distributions of the values of parameters for each

TensorFlow variable to TensorBoard every N steps.

• LayerVisualizationHook: Write visualizations of the various feature maps

for different convolutional layers to TensorBoard every N steps.

2.7 Postprocessing

Much like the preprocessing stage, the postprocessing stage of the pipeline allows

for arbitrary transformations of the output of the Image Transformation stage. The

only two transforms currently included in the framework are:

• Watershed: Given a set of specified parameters, convert a dataset annotated

with affinities to a segmentation of the dataset. The current version is imple-

mented in Julia.

32

• Mean Affinity Agglomeration: Given a segmentation and a set of affinities,

greedily merge or split regions based on the affinity continuity along borders

of the regions. The current version is also implemented in Julia.

2.8 Ensembling

The framework also enables the use of various ensembling techniques both at training

time and at inference time through the EnsembleLearner class. This class allows

a group of models to be trained simultaneously, and upon the completion of this

training, an ensembling technique can be applied to their outputs for prediction. This

ensembling technique can be any arbitrary ensembling method, including learned

ensembling techniques that train on the outputs of various models. Currently the

framework supports the following ensembling methods:

• ModelAverager: Average the output of several different models. If multiple

copies of the same net are trained independently, averaging the outputs reduces

the variance of predictions and leads to higher accuracy.

2.9 GPU Acceleration and Portability

Paramount in modern deep learning training is GPU Acceleration. In our experi-

ments, using a GPU accelerated training speeds by factors of 100 or more, which was

indispensible in the experimentation process. Because the entire pipeline sits on top

of a TensorFlow backend, and TensorFlow automatically optimizes its own internal

33

processing graph for use on GPUs that support CUDA, our framework is GPU-enabled

by default.

Because our group did not have a dedicated set of GPU hardware at the beginning

of the project, we decided to use the containerization platform Docker, along with

some NVIDIA plugins, to enable GPU training on any Linux machine with a GPU.

By creating a Docker container that has the entire framework pre-installed, training

and inference can be run on any machine that has access to a GPU with minimal

setup.

34

Chapter 3

2D Segmentation

In this chapter, we establish the task of 2D Segmentation of EM images, attempt to

train models that perform well on this task, and evaluate our results. The purpose

of these experiments is not so much to achieve state-of-the-art performance on the

task, but to examine the effect that increasing training data quality and reducing

variance in predictions has on model performance.

3.1 Task Definition

2D Segmentation involves taking a single 2D slice of EM tissue and segmenting it

into its constituent cells. Compared to 3D segmentation, this is a simple task, but

will still allow us to show the properties of different models on EM data. To achieve

segmentation, we will train models that predict boundaries of cells, and then use a

Watershed algorithm to segment based on those boundary predictions.

35

Figure 3.1: An example of 2D boundary detection. Left: the original image taken
with an electron microscope. This particular example is neuron tissue taken from
Droposphila melanogaster in a dataset created for the ISBI 2012 EM segmentation
challenge [3]. The resolution of each pixel is 4nm x 4nm. Right: The ground truth
boundaries corresponding to cell membranes in the input image, as labeled by human
experts. The labels are binary values, although the actual border deliniation is
somewhat arbitrary due to the fact that real applications of boundary detection are
invariant to small differences in boundary shapes.

The problem statement for 2D Boundary detection is such: given a 2-dimensional

single-channel (i.e. greyscale) image of neural tissue taken with an electron micro-

scope, produce an image that labels the boundaries of all the distinct cells in the

image. An example of this boundary-detection task can be found in Figure 3.1. This

task is made somewhat more difficult by the existence of organelles with well-defined

borders, as well as blood vessels and structured interstitial tissue.

36

3.2 Evaluation Metrics

The two main evaluation metrics we will use for this task are Rand Score and Pixel

Error. Formal definitions of both of these error metrics can be found in Appendix

A.

• Rand Score: We will use the Rand Score to determine whether or not the

segmentation process correctly labels different cells as different objects. We

will also look at the Rand Split Score and the Rand Merge Score, to see where

the models inaccurately split and merge different regions.

• Pixel Error: We will use the Pixel Error to gauge the efficacy of our models

at predicting the intermediate boundary stage.

3.3 Models

We define two models - both closely resembling models from the literature - with

which we will run experiments:

• N4: The N4 Architecture is a standard, fully-convolutional network. We use an

identical architecture to the architecture outlined in the original N4 paper[7].

The architecture uses comparatively fewer convolutions, each with compara-

tively larger filter sizes. The number of feature maps stays the same through-

out the net, and ends with a fully connected layer to predict an output pixel

with a sigmoid function. Intermediate non-linearities are ReLU. Given a large

enough input, an entire output patch can be predicted pixel-by-pixel. The

37

effective field-of-view for each pixel in the output is a 95 pixel square in the

input image.

Figure 3.2: The N4 architecture used for 2D segmentation

• VD2D: The VD2D Architecture is also a standard, fully-convolutional net-

work, and is nearly identical to the architecture originally used in the VD2D

paper[15]. By comparison, the VD2D architecture is deeper than N4, and uses

more successive layers with smaller convolutional filters. Activations are ReLU,

and the output is a pixel affinity. The effective field of view for each pixel in

the output is a 109 pixel square in the input image.

Figure 3.3: The VD2D architecture used for 2D segmentation

38

3.4 Dataset

One prominent competition that evaluates performance on this sort of task is the In-

ternational Symposium on Biomedical Imaging (ISBI) EM Segmentation Challenge,

which has had active submission since 2012. The ISBI Challenge organizers pro-

vides a training set of EM images, along with a set of binary boundary maps. The

challenge website describes the training data as “a set of 30 sections from a serial

section Transmission Electron Microscopy (ssTEM) data set of the Drosophila first

instar larva ventral nerve cord (VNC). The microcube measures 2 x 2 x 1.5 microns

approx., with a resolution of 4x4x50 nm/pixel”[3]. This resolution description im-

plies that each pixel represents a 4x4nm patch on the surface of a slice, with each

slice being 50nm thick. We build prediction systems using several different architec-

tures, regularization methods, and data transformation techniques. We make several

submissions to the leaderboard, ultimately scoring quite competitively.

The dataset comes with two EM stacks from the same neural tissue: one train

stack with boundary labels consisting of (30) 512x512 slices; and one test stack

without boundary labels consisting of (30) 512x512 slices. We hold out 25% of the

train stack (7 slices) as a validation set to report results.

3.5 Training

We trained our nets each for 30000 iterations (with the exception of VD2D w/o

augmentation, which was trained for 15000), sampling the training set in random

patches, in mini-batches of 16. For every model, we sought to minimize the cross

39

entropy between the predicted boundaries and the true boundary labels, defining our

loss function as:

L(x,y) = − log(σ(yTx− (1− yT)x))

where σ is the sigmoid function, x is the prediction, and y is the true boundary.

At each step, we executed one iteration of optimization using the Adam Opti-

mizer, and ever 100 steps we made predictions on the validation set to see how well

the model generalized.

We made five different training runs using different parameters:

• N4, w/o augmentation: We trained our N4 model on the train data using

the procedures above, making sure not to add any data augmentations during

the training process.

• VD2D, w/o augmentation: We trained our VD2D model on the train data

using the procedures above, making sure not to add any data augmentations

during the training process.

• N4: We trained our N4 model on the train data using the procedures above,

this time including data augmentations that randomly flipped, rotated, blurred,

and otherwise distorted each sample before being fed into the net.

• VD2D: We trained our VD2D model on the train data using the procedures

above, this time including data augmentations that randomly flipped, rotated,

blurred, and otherwise distorted each sample before being fed into the net.

40

Pixel Error Rand - Full Rand - Merge Rand - Split

N4 w/o aug 0.112204 0.65693 0.506545 0.934315
N4 0.0827646 0.950296 0.933164 0.968069
VD2D w/o aug 0.0998995 0.80245 0.725266 0.898018
VD2D 0.0842352 0.954286 0.976404 0.933148
VD2D (x5) 0.083214 0.975745 0.985624 0.968843

Table 3.1: The results of various architectures on the 2D Segmentation task. Notice
that using data augmentation drastically improves the performance of the nets. Ad-
ditionally, ensembling multiple instances of the best architecture produces the best
Rand Score.

• VD2D (x5) We independently ran 5 iterations of VD2D training (with aug-

mentation), and then used the ensembling technique of model averaging to

derive predictions.

3.6 Results

After training, we run the trained models on the validation set (since we don’t

have labels for the test set) to determine their performance. Results are numerically

summarized in Table 3.1, and graphs of Rand Score and Pixel Error on the validation

set over the course of training are displayed in Figure 3.4. Of the two models, VD2D

generally performed better than N4, models trained with augmentation performed

much better than those trained without, and the ensembled VD2D performed the

best out of all training runs in terms of Rand Full Score.

Based on these results, we can draw three major conclusions. First, augmentation

is extremely important in the training process. As the two graphs in Figure 3.4

demonstrate, models without random data augmentation learn for a short time,

41

Rand Index

Pixel Error

Figure 3.4: Training curves, smoothed, for 2D segmentation. Top: The full Rand
scores on the validation set (from top: VD2D, N4, VD2D w/o augmentation, N4
w/o augmentation). Bottom: The pixel error on the validation set (from top: N4
w/o augmentation, VD2D w/o augmentation, N4, VD2D).

42

but they quickly begin to overfit, resulting in very poor generalization performance

later on (even though the loss function continues to decrease). Second, we find that

deeper nets can outperform shallower nets, since the deeper VD2D net outperforms

the N4 architecture, which is a finding consistent with results of others who have

used deep learning in segmentation tasks. Finally, we can conclude that these sorts

of nets have a significant amount of variance in their predictions; by using ensembling

methods we can reduce the variance between predictions, and thereby achieve higher

performance. In later sections, we will explore further how training data quality

affects training performance.

43

Chapter 4

3D Segmentation

In this chapter, we establish the task of 3D Segmentation of EM Images, attempt to

train models that perform well on this task, and evaluate our results. The purpose

of these experiments is not so much to achieve state-of-the-art performance on the

task, but to examine the effect that increasing training data quality and reducing

variance in predictions has on model performance.

4.1 Task Definition

The problem of 3D Segmentation is formulated as such: given a stack of 2-

dimensional EM images generated that represent a 3-dimensional volume of tissue

(i.e. the images were taken of successive physical slices of tissue), produce a segemen-

tation1 of the set of images that uniquely labels each discrete entity in the original

1A segmentation of an image or a stack of images is defined as producing a label for each pixel
in the image or stack of images, where each unique label corresponds to a discrete object in the
physical volume.

44

volume. That is, if a tissue volume contains a neuron that passes vertically through

several different slices, then the portions of each slice through which the neuron

passes would be labeled with the same identifier. This problem is significantly more

complicated than the boundary prediction problem stated before, because it requires

an awareness of context in 3 dimensions, rather than 2. Additionally, most EM

datasets are anisotropic, meaning that the resolution is not uniform in all directions

(specifically, the z-direction perpendicular to the plane of each image is generally

dilated). An example of a segmentation can be found in Figure 4.1.

Figure 4.1: An example of a 2D cross-section of a 3D segmentation. Left: one of
the original images in a stack of images taken with an electron microscope. This
particular example is neuron tissue taken from the common mouse in a dataset used
in the ISBI 2013 EM segmentation challenge [14]. The resolution of each pixel is
6nm x 6nm, and each image represents a slice 30nm thick. Right: The ground truth
segmentation corresponding to a segmentation of each individual object in the input
image, as labeled by human experts. The labels are unique identifiers, although the
border deliniation is somewhat arbitrary due to the fact that real applications of
boundary detection are invariant to small differences in boundary shapes.

Trivially, the complexity of objects in 3 dimensions is potentially much greater

than in two dimensions, so it makes sense that any learning method used to train

a system that performs segmentation might be adept at certain types of volumetric

45

data, and inept at others. To evaluate methods on different types of volumetric data,

we selected two different challenges that provide us with samples of neural tissue

that have different geometric properties, not only due to geometric differences in the

underlying tissue but also because of differences in sample preparation techniques.

These two challenges are the SNEMI3D Segmentation Challenge and the CREMI

Segmentation Challenge.

4.2 Evaluation Metrics

Similar to the 2D Segmentation task, the two main evaluation metrics we will use for

this task are Rand Score and Pixel Error. Formal definitions of both of these error

metrics can be found in Appendix A.

• Rand Score: We will use the Rand Score to determine whether or not the

segmentation process correctly labels different cells as different objects. We

will also look at the Rand Split Score and the Rand Merge Score, to see where

the models inaccurately split and merge different regions.

• Pixel Error: We will use the Pixel Error to gauge the efficacy of our models

at predicting the intermediate boundary stage.

4.3 Models

We define two models for experimentation:

46

Figure 4.2: The VD2D-3D architecture for 3D Segmentation.

• VD2D-3D: The VD2D-3D implemented for this experiment is close to the one

published by Lee et. al.[15]. It is a standard, fully-convolutional architecture

that consists of two computational stages. The first stage of the net computes

a series of 2D convolutions and poolings on each slice of a given sample stack,

and the second stage computes a series of 3D convolutions and poolings on

the entire stack. Intermediate nonlinearities are ReLU. Because the dataset is

anisotropic, the effective field of view in the z direction is much smaller than

in the x and y direction in terms of pixels, which is achieved through fewer

z-dimensional poolings and smaller z-dimensional convolutions. The model

predicts a set of 3 affinities (x, y, z) for each pixel. The effective field of view

is a 85 pixel square in the x-y plane, and 7 pixels in the z direction.

• UVR-Net: The UVR-Net borrows concepts from the U-Net, V-Net, and

Residual Nets, and is an architecture that all members of our group contributed

to[22, 10, 19, 6]. The structure consists of 4 ”U Layers”, which are pairs of

down-convolutions and up-convolutions. The output of the down-convolutions

skips across the net, and is concatenated to the input of the corresponding up-

47

Figure 4.3: The UVR-Net architecture for 3D Segmentation

convolutional component (the number of feature maps of the first convolution

in each ”U Layer” is twice the subsequent ones). We add residual connections

that skip the convolutions from the output of pooling layers, and add skip

connections across the ”U-Layer”. After each convolution, we apply ReLU

nonlinearities, except between convolutions and additions with residual con-

nections. These modifications are all added to attempt to make the net learn

first by predicting an output that looks similar to the input, and slowly eroding

elements until an affinity map is left.

48

4.4 Dataset

We will train and experiment on (4) 3D EM Datasets, taken from two different

competitons: SNEMI3D and CREMI. We evaluate on 4 datasets instead of 1 to

discuss the shortcomings of these models, and how training on different types of

data affect performance.

The SNEMI3D Segmentation Challenge is a highly active 3D segmentation chal-

lenge (organized in advance of ISBI 2013), and provides a stack of EM images for

training, along with ground truth segmentations of the EM images in 3 dimen-

sions. The challenge website describes the training and testing data as “stacks of

100 sections from a serial section Scanning Electron Microscopy (ssSEM) data set

of mouse cortex. The microcube measures 6 x 6 x 3 microns approx., with a reso-

lution of 6x6x30 nm/pixel”[2]. Like the ISBI 2012 dataset, the SNEMI3D dataset

is anisotropic, and particularly dilated in the z-direction. Additionally, the data is

from mouse cortex, rather than from Droposphilia, and the geometry of the tissue is

significantly different.

The SNEMI3D dataset comes with a train and a test set, both of which consist of

(100) 1024x1024 pixel images. The train set includes a set of labels, which represent

a segmentation of the bodies in the stack. Since the test set does not include such

a segmentation, we create a validation set of 25 images (25%) which we will use to

evaluate the performance of our models.

The Circuit Reconstruction from Electron Microscopy Images (CREMI) Chal-

lenge is a somewhat less-active challenge organized in advance of MICCAI 2016[8].

The challenge provides three datasets for training, all of which are volumetric samples

49

of Drosophila melanogaster. The training and testing data are stacks of 125 sections

from an ssSEM data set, with each slice having a resolution of 4x4x40nm/pixel.

These datases are also anisotropic, being dilated in the z-direction. Furthermore,

the types of neurons sampled are quite diverse between datasets: from visual in-

spection, some of the neurites in one of the datasets is much thinner than those in

the others, suggesting that models might perform differently when trained/tested on

these different datasets. Finally, these datasets are quite a bit noisier than ISBI or

SNEMI3D: there are many more major misalignments, many patches of blur, and

some slices are missing entirely. These datasets will provide a good measure of how

robust our methods are to noise in volumetric data.

The three CREMI datasets (labeled CREMI A, CREMI B, and CREMI C) con-

tain train and test sets, each of which consist of (125) 1250x1250 pixel images. The

train set includes a set of labels, which represent a segmentation of the bodies in

the stack. Like SNEMI3D, the test sets don’t include segmentaitons, so we create

validation sets from the training sets by witholding 25 slices (20%) from each for

evaluation of model performance.

4.5 Training

We train each model on each of the datasets, for a total of 8 training runs. Training

was performed on a NVIDIA Titan X. We trained each net for 30000 iterations,

sampling volumetric sections from each dataset that were 16 slices thick. For every

50

model, we sought to minimize the cross entropy between the predicted affinities and

the true afinnity labels, defining our loss function as:

L(x,y) = − log(σ(yTx− (1− yT)x))

where σ is the sigmoid function, x is the prediction, and y are the true affinites.

At each step, we executed one iteration of optimization using the Adam Opti-

mizer, and ever 100 steps we made predictions on the validation set to see how well

the model generalized.

4.6 Results

After training, we run prediction on the validation sets for each dataset (since we

don’t have labels for the test set) to determine their performance. Results are numer-

ically summarized in Table 4.1. The training graphs documenting Rand Score and

Pixel Error for models training on SNEMI3D, CREMI A, CREMI B, and CREMI C

can be found in Figures 4.4, 4.5, 4.6, and 4.7, respectively.

We can draw several conclusions about the qualities that these models have when

trained on these datasets. First, it is patently obvious that there is large variation in

the training process. Sometimes, the models would train quite quickly; sometimes,

they wouldn’t train appropriately (in the case of VD2D-3D on CREMI C). If we

were to repeat this study, we would likely train each model on each dataset multiple

times with the same parameters, and take the best performing model from each set

of runs.

51

SNEMI3D
Rand Index

Pixel Error

Figure 4.4: Training curves, smoothed, for 3D segmentation. Top: The full Rand
scores on the SNEMI3D validation set (from top: VD2D-3D, UVR-Net). Bottom:
The pixel error on the SNEMI3D validation set (from top: VD2D-3D, UVR-Net).
The sharp dip in the Rand Score for the UVR-Net was due to a small parameter
change in validation procedure that was quickly reverted.

52

CREMI A
Rand Index

Pixel Error

Figure 4.5: Training curves, smoothed, for 3D segmentation. Top: The full Rand
scores on the CREMI A validation set (from top: UVR-Net, VD2D-3D). Bottom:
The pixel error on the CREMI A validation set (from top: VD2D-3D, UVR-Net).

53

CREMI B
Rand Index

Pixel Error

Figure 4.6: Training curves, smoothed, for 3D segmentation. Top: The full Rand
scores on the CREMI B validation set (from top: VD2D-3D, UVR-Net). Bottom:
The pixel error on the CREMI B validation set (from top: VD2D-3D, UVR-Net).

54

CREMI C
Rand Index

Pixel Error

Figure 4.7: Training curves, smoothed, for 3D segmentation. Top: The full Rand
scores on the CREMI C validation set (from top: UVR-Net, VD2D-3D (barely pic-
tured)). Bottom: The pixel error on the CREMI C validation set (from top: VD2D-
3D, UVR-Net). The absurdly low Rand score for the VD2D-3D model might be a
bit misleading; it is possible that there was a training fluke for this iteration.

55

Table 4.1: Results of 3D Segmentation on various datasets

SNEMI3D

Pixel Error Rand - Full Rand - Merge Rand - Split

VD2D-3D 0.102204 0.790909 0.95196 0.676465
UVR-Net 0.0863271 0.783288 0.993469 0.646511

CREMI A

Pixel Error Rand - Full Rand - Merge Rand - Split

VD2D-3D 0.098559 0.651105 0.981541 0.487117
UVR-Net 0.034879 0.576646 0.449545 0.803948

CREMI B

Pixel Error Rand - Full Rand - Merge Rand - Split

VD2D-3D 0.097363 0.845614 0.929446 0.775653
UVR-Net 0.0379261 0.846339 0.933393 0.774138

CREMI C

Pixel Error Rand - Full Rand - Merge Rand - Split

VD2D-3D 0.11817 0.00283098 0.91909 0.00141767
UVR-Net 0.0419219 0.748079 0.933252 0.624223

Second, in every setting the UVR-Net outperforms the VD2D-3D net in Pixel

Error; UVR-Net consistently has substantially lower pixel error than VD2D-3D, by

about the same margin in every trial. This suggests that the residual layers and skip

connections built into the architecture are doing their jobs, and are reconstructing

images that look a lot like the input (an affinity map should look quite like the

boundaries of the input).

Thrid, the quality of the data significantly affects the performance of these mod-

els. While some of the differences in scores can be attributed to variance in the

56

training of the model, during the experimentation process (before results generation)

it became clear that models would perform differently on different datasets. From

this, we can draw the conclusion that certain datasets are ”harder” than others to

learn segmentatons from. What makes one dataset ”harder” than another?

In the SNEMI3D dataset, for instance, many of the objects are significantly

thinner and extend longer distances across the EM slices than in the other datasets.

Data quality can make a huge difference as well. The three different CREMI datasets,

although taken from the same biological sample and imaged with the same process,

have different properties in terms of stack quality. Visually looking at each layer of the

CREMI stacks, the quality of the images varies greatly. Some of the CREMI datasets

have significantly more blurred slices than others; the same goes for blemishes and

cracks. CREMI C is missing a slice entirely. Individual slice artifacts may have a

small impact on final metrics, but it is likely that only dataset errors affecting many

slices across a dataset will have significant impact on the Rand Score of predictions.

The most obvious culprit between the CREMI datasets is alignment. All three

datasets are poorly aligned across the entire stack, but in terms of alignment CREMI

A is worse than CREMI B and CREMI C. The Rand scores on CREMI A were also

lower across all models than the other CREMI datasets. While this is not concrete

evidence that the models are quite susceptible to error on poorly aligned datasets, the

correlation certainly suggests that improving alignment procedures for EM datasets,

or even building explicit alignment layers into models might produce better results

across diverse datasets.

57

Chapter 5

Alignment

One major hurdle in inferring neural structure from EM images is that the image

acquisition process is inherently noisy. While the EM imaging technologies used

for the creation of neuron images (typically TEM) are quite stable, there is often

variance in sample preparation techniques, resulting in all sorts of distortions and

errors at imaging time. One particular type of error, image misalignment, occurs

during the slicing of sample tissue, when some physical factor causes a resulting

slice to be warped or translated in such a way that the resulting stack of images is

misaligned. Intuitively, this means that every point in one EM slice data does not

necessarily map to the point directly below it the neighboring slice. An example of

slice misalignment can be visualized in Figure 5.1.

The problem of misalignment within a set of EM images particularly induces

problems in the task of 3D Segmentation. While most techniques are rather invariant

to small misalignments (particularly CNNs, which can be trained to be invariant

58

Figure 5.1: An example of a 3D stack of EM images that contains a misalignment.
Left: The provided alignment of a stack. This represents a misalignment where
the fourth image in a stack of images actually represents a slice slightly translated
in position. Right: The correct alignment of the stack, where all the pixels in the
fourth position have been translated enough such that the structures depicted in the
input data line up in the z-direction.

to warping of many kinds), large misaligments can often induce false splitting in

segmentations. Very deep CNNs trained with a really diverse set of data would

likely be able to compensate for these sorts of misalignments, but it would be more

prudent to develop a more efficient strategy for automatically healing misalignments

in the data.

In this section, we will define the task of realignment, construct and train models,

and examine the results of these experiments.

5.1 Task Definition

In an abstract sense, the realignment task is to take a stack of raw EM images and

distort it such that it as accurately as possible reflects the reality of the underlying

biological structures it supposedly represents. This is a bit too daunting of a task for

59

the scope of this paper, so instead propose the task of realigning one ’distorted’ slice

to another ’reference’ slice, with the stipulation that these two slices are adjacent

within some EM stack. That is, transform one of two consecutive images in an EM

stack such that their aligment is maximized.

5.2 Evaluation Metrics

Coming up with an empirical metric to measure the aligment of two images is difficult,

because domain-knowledge is required to say with certainty whether two images are

probably aligned. So, in lieu of a metric for alignment, we will take an already

aligned (i.e. by the empirical methods mentioned in Chapter 1) stack of images and

randomly distort them. Both the parameters for distortion (which can be any sort

of parameterized transform) and the original, undisturbed image of the ’distorted’

slice can serve as labels when evaluating error, since the distortions were induced.

From this formulation, we define three evaluation metrics, all of which are defined

in Appendix A:

• Pixel Error: We will use Pixel Error to determine whether, when given a

correctly-aligned ’reference’ image and a ’distorted’ image, the model outputs

an image that is pixelwise close to the preimage of the ’distorted’ image.

• Cross Correlation: Similar to Pixel Error, we will use Cross Correlation to

determine whether or not a model’s prediction aligns with the preimage of a

’distorted’ image. Cross Correlation is somewhat more continuous than Pixel

Error.

60

Figure 5.2: A prototypical Spatial Transformer Network. The major components
of the network are the localization net, and the spatial transformer module. Both
sections are fully differentiable, meaning that a gradient can be backpropogated
through the transform and up through the localization net for training.

• L2 Error on Parameters: The parameters to a transformation are typically

continuous real numbers, meaning that we can calculate a meaningful L2 Error

on the Parameters if our model predicts a set of parameters (rather than simply

predicting the set of images).

5.3 Models

Both of our models for predicting realignment are based on the Spatial Transformer

Network, which was originally designed as a tool to regularize convolutional networks

and speed up image classification tasks[11]. Spatial Transformer Networks are con-

ceptually straightforward: it is possible to define a class of image transformations

61

(i.e. rotation, translation, affine) that are at least partially differentiable. If a trans-

formation is at least partially differentiable, then any gradient that is calculated at

the output of the transformer can be backpropogated through the transformer and

into its parameters. This means that parameters can be learned, through the use

of a localization net. In general, for a chosen spatial transform (a sub-differentiable

transform), localization nets can take on any architecture that produce appropriate

parameters for that transformer. We define two models; for both we will choose

as our spatial transformer module the affine transform1 module as outlined in the

original paper. Our two localization models are:

• Fully Connected: The Fully Connected (FC) localization network is a shallow

attempt at learning simple transformations. For a pair of fixed size images with

N pixels (the ’reference’ image and the ’distorted’ image), the FC localization

network has two fully connected layers, with 512 units in the first layer, and 6

units in the last layer. We apply ReLU between the first and second layer, and

because the parameters of an affine transform can be negative or positive, the

final layer is run through a tanh function before being output.

• Standard Convolutional: The Standard Convolutional localization network

has the same set of outputs and inputs as the FC localization network, namely

taking two N -sized inputs, and outputting 6 parameters. The network consists

of 4 convolutional layers, each with 3 (1x3x3) convolutions into 48 feature maps,

a ReLU nonlinearity, and a (1x2x2) pooling. After these four layers are two

1An affine transform is a class of transforms that include rotation, scaling, shearing, and trans-
lating. An affine transform is parameterized by 6 real numbers.

62

fully connected layers, that work in the same way as in the FC localization net,

except with inputs that match the outputs of the last pooling.

Both these models were chosen because of examples in the original Spatial Trans-

former paper. Future work will likely consist of designing alternate architectures.

5.4 Dataset

For simplicity, we use the ISBI 2012 dataset referenced in Chapter 3. This dataset

is quite well-aligned, and serves as a good ground-truth for random misalignments

to be applied to. Just as before, a validation set was held out from the training set

to give us a way to evaluate our performance.

5.5 Training

We trained our models for 100,000 steps each, randomly sampling a pair of adjacent

patches from the dataset and applying a random translation or rotation to both

patches, designating one patch as the ’reference’ patch and the other the ’distorted’

patch. A third ’ground truth’ patch is calcuated by taking the preimage of the

’distorted’ patch and applying the same transformation as was applied to the ’refer-

ence’ patch. This creates a training input and label. Both translation and rotation

were bounded to within realistic values for the problem domain (i.e. so that images

weren’t offset by twice their length).

63

We attempted to train each of our models under various conditions: without

augmentation on the dataset, and with augmentation on the dataset when sampled.

That is, we either drew from a very small training set, or a very large one.

We attempted to use two different loss functions: smoothed cross correlation,

and L2 Loss on the parameters. The smoothed cross correlation was calculated

after the predicted transformation was applied, but because both of our model types

predicted parameters for a transformation using a Spatial Transformer, we were

able to backpropogate the gradient for this loss function back through the Spatial

Transformer and into the predicted parameters.

5.6 Results

Unfortunately, we found that our quantitative results were not of sufficient quality

to report. We found that when training both styles of localization nets without aug-

mentation the nets would actually learn how to compensate for arbitrary translations

and rotations on data it had seen before. That is, if it saw a pair of patches it had

seen before, but not necessarily with the particular transformation, it could heal that

never-before-seen transformation. However, there was no generalization whatsoever

when testing on the validation set: predictions were effectively random. This occured

for all of our models, regardless of whether we trained with the pre-transformation

parameters as our label or with the transformed image as our label.

Despite these discouraging results, we believe that this particular avenue for ex-

ploration has promise. Because we were able to train nets that could learn arbitrary

64

transformations on image data it had seen before, we believe that the primary im-

pediment is localization net architecture, rather than the whole Spatial Transformer

concept. Perhaps a deeper or wider net would show improvements, or one with

residual connections to maintain the original features of the ’distorted’ image.

Additionally, one of the key properties of the Spatial Transformer Network is

that it can propogate gradients from downstream tasks through the transformation

layer. This could potentially allow for a segmentation model that, instead of learning

based ona fixed alignment, dynamically learns an alignment such that segmentation

accuracy is directly maximized.

65

Chapter 6

Conclusion

If there is one thing that we have learned throughout the experimentation process,

it’s that making incremental improvements to any stage of the EM Segmentation

pipeline is a both a large theoretical and computational challenge. Because there

is not a strong theoretical underpinning for the emergent properties of various neu-

ral networks, it is often quite difficult to come up with an architecture that learns

anything about segmentation, let alone outperforms some existing state-of-the-art

model. At the same time, the data processing pipeline becomes more complex as

more advanced methods are implemented, and it is inevitable that experimentation

velocity will diminish with the number of parameters to tune in the system. It is this

duality of problem that inspired this thesis, and now brings us to our conclusion.

If the topics covered in Chapters 1-5 appeared to conceptually follow a logical

progression, that was intended. In Chapters 1 and 2, we discussed the practical prob-

lems of developing a real-world system for EM Segmentation, and explored various

66

architectural and design solutions to these problems. Our own struggle as researchers

with these problems culminated in the development of the presented EM Segmen-

tation framework, DeepSeg. While the DeepSeg framework is far from perfect, it

allowed us to build meaningful abstractions as we explored different architectures

and pipeline components without worrying too much about how different parts of

the pipeline were affected by our explorations. Moreover, it allowed us to easily

repeat experiments and keep track of the results we generated.1

Armed with this framework, in Chapter 3 we were able to demonstrate some of

the various parameters and dataset attributes that affect the performance and gen-

eralizability of models on 2D segmentation. While the problem of 2D segmentation

is not particularly exciting, as state-of-the-art models perform on par with human

experts, it is a good problem domain in which to concretely explore the effects caused

by altering these parameters and dataset attributes. To this end, we showed that

deeper networks performed better than shallower ones, and that substantial data

augmentation is extremely important to the generalizability of models.

We expanded on the idea of dataset quality in Chapter 4, where we explored the

challenge of 3D segmentation on 4 separate datasets. While the original intent of the

research project was to build self-contained models that would approach or exceed

state-of-the-art methods for 3D EM segmentation, we quickly discovered that not all

3D EM segmentation tasks are not equal. Some datasets are better than others. We

did show that there was variance in both the models we trained, and that adding

skip connections and residual layers helped enforce some invariants in the look of the

1In fact, all of the results generated in this paper were generated by repeatable experiments set
up in Jupyter notebooks alongside the text of this report.

67

output. But the major takeaway from this section is that imaging artifacts, and in

particular misalignments, have a major impact on the performance of several classes

of models, even if the underlying structures of the data are roughly the same.

In Chapter 5, we attempted - albeit unsuccessfully - to explore automated meth-

ods for correcting misalignments in EM stacks using learned methods. We were

particularly concerned with Spatial Transformer Networks, which rather than learn

an image transformation from scratch simply learn the parameters to a pre-defined

image transform, doing so in such a way that error can be propogated up from a

downstream task to inform better transforms. While our attempts to apply these

techniques to EM stack realignment were not emperically successful, certain results

pointed to the notion that while our attempts were incorrect, the approach in general

might yield positive results with more experimentation.

Now, at the conclusion of this thesis, we are now concerned with the implications

of our findings. While we did not develop models that achieved state-of-the-art

performance in any of the benchmark tasks - we preform admirably, but not at the

top of the leaderboards - we developed a set of tools and model paradigms that are

good starting points for future research in various areas of the EM segmentation

pipeline. In terms of research direction and future work, we are most interested

in developing segmentation models that are end-to-end trainable. That is, we are

interested in developing an EM segmentation pipeline where each stage is fully (or

at least partially) differentiable, allowing direct training of segmentations from raw

inputs. While there is still a monumental amount of research requred to create such

a pipeline that performs effectively, we believe that replacing the various hand-tuned

68

components of the pipeline with trained components is a promising avenue of research

for boosting end-segmentation performance.

69

Appendix A

Metric Definitions

A.1 Pixel Error

Given two images, pixel error is defined as the mean of the absolute numerical dis-

tance between corresponding pixels in both images. Formally, we define:

P (X, Y) =

∑
i∈S |Xi − Yi|
|S|

for tensors X and Y over all indexes i in the index space S for tensors X and Y .

A.2 Rand Score

The version of the Rand Score used in this thesis is the Rand F Score. The Rand

F Score essentially counts all the non-distinct pairs in an image that are correctly

labeled as belonging to the same or different grouping with respect to a reference

70

image. Formally, we define S1, S2, ...Sn ⊆ S to be the set of all groupings Si in an

input volume (i.e. distinct labels in a segmentation)m and T1, T2, ...Tn ⊆ T to be the

set of all groupings Ti in a ground-truth volume. Let:

ti = |Ti|

si = |Si|

ci,j = |Si ∩ Tj|

Then, the Rand F Score can be defined as:

RFull(S, T) =

∑
i,j ci,j

α
∑

i s
2
i + (1− α)

∑
j t

2
i

RMerge(S, T) =

∑
i,j ci,j∑
i s

2
i

RSplit(S, T) =

∑
i,j ci,j∑
j t

2
j

where N is the number of voxels in a volume. See https://github.com/

seung-lab/segascorus/blob/master/segerror-manual.pdf for more details of

the Rand F Score.

71

https://github.com/seung-lab/segascorus/blob/master/segerror-manual.pdf
https://github.com/seung-lab/segascorus/blob/master/segerror-manual.pdf

A.3 Cross Correlation

Given two images, cross-correlation is defined as the mean of the prodiuct of corre-

sponding pixels in both images. Formally, we define:

C(X, Y) =

∑
i∈S |Xi × Yi|
|S|

for tensors X and Y over all indexes i in the index space S for tensors X and Y .

A.3.1 Smoothed Version

Because standard Cross Correlation is not particularly continuous (i.e. two images

will typically be highly correlated if they match exactly, and loosely correlated if

they are translated or rotated), we define a somewhat more smoothed version that

attempts to make the function more continuous. We define the function:

Cs(X, Y) =

∑
i∈S |Xi × (Gθ(Y))i|

|S|

for tensors X and Y over all indexes i in the index space S for tensors X and Y .

The function Gθ(·) is a smoothing function, which applies a Gaussian filter to its

arguments based on parameters θ. The amount of smoothing that occurs determines

how dontinuous the smoothed cross-correlation function is. Because the continuity of

this function can be controlled, it makes for a more-useful loss function than standard

Cross Correlation.

72

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, Xiaoqiang Zheng,
and Google Research. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Distributed Systems.

[2] Ignacio Arganda-Carreras, H. Sebastian Seung, Ashwin Vishwanathan, and
Daniel R. Berger Vishwanathan. ISBI 2013 challenge: 3D segmentation of neu-
rites in EM images — SNEMI3D: 3D Segmentation of neurites in EM images,
2013.

[3] Ignacio Arganda-Carreras, Srinivas C. Turaga, Daniel R. Berger, Dan Cirean,
Alessandro Giusti, Luca M. Gambardella, Jürgen Schmidhuber, Dmitry Laptev,
Sarvesh Dwivedi, Joachim M. Buhmann, Ting Liu, Mojtaba Seyedhosseini,
Tolga Tasdizen, Lee Kamentsky, Radim Burget, Vaclav Uher, Xiao Tan, Chang-
ming Sun, Tuan D. Pham, Erhan Bas, Mustafa G. Uzunbas, Albert Cardona,
Johannes Schindelin, and H. Sebastian Seung. Crowdsourcing the creation of
image segmentation algorithms for connectomics. Frontiers in Neuroanatomy,
9:142, nov 2015.

[4] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmentation. Cvpr
2015, page 5, 2015.

[5] Thorsten Beier, Constantin Pape, Nasim Rahaman, Timo Prange, Stuart Berg,
Davi D Bock, Albert Cardona, Graham W Knott, Stephen M Plaza, Louis K

73

Scheffer, Ullrich Koethe, Anna Kreshuk, and Fred A Hamprecht. Multicut brings
automated neurite segmentation closer to human performance. Nature Methods,
14(2):101–102, jan 2017.

[6] Özgün Çiçek, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox, and Olaf
Ronneberger. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse
Annotation. jun 2016.

[7] Dan C Cirean, Alessandro Giusti, and Luca M Gambardella. Deep Neural
Networks Segment Neuronal Membranes in Electron Microscopy Images.

[8] Funke. Jan, Stephan Saalfeld, Davi Bock, Srini Turaga, and Eric Perlman.
CREMI: Circuit Reconstruction from Electron Microscopy Images, 2016.

[9] Robert M. Haralick and Linda G. Shapiro. Image segmentation techniques.
Computer Vision, Graphics, and Image Processing, 29(1):100–132, jan 1985.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. Arxiv.Org, 7(3):171–180, 2015.

[11] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and koray Kavukcuoglu.
Spatial Transformer Networks, 2015.

[12] Micha l Januszewski, Jeremy Maitin-Shepard, Peter Li, Jörgen Kornfeld, Win-
fried Denk, and Viren Jain. Flood-Filling Networks. nov 2016.

[13] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[14] Narayanan Kasthuri, Kenneth Jeffrey Hayworth, Daniel Raimund Berger,
Richard Lee Schalek, Jos?? Angel Conchello, Seymour Knowles-Barley, Dongil
Lee, Amelio V??zquez-Reina, Verena Kaynig, Thouis Raymond Jones, Mike
Roberts, Josh Lyskowski Morgan, Juan Carlos Tapia, H. Sebastian Seung,
William Gray Roncal, Joshua Tzvi Vogelstein, Randal Burns, Daniel Lewis
Sussman, Carey Eldin Priebe, Hanspeter Pfister, and Jeff William Lichtman.
Saturated Reconstruction of a Volume of Neocortex. Cell, 162(3):648–661, 2015.

[15] Kisuk Lee, Aleksandar Zlateski, Ashwin Vishwanathan, and H Sebastian Seung.
Recursive Training of 2D-3D Convolutional Networks for Neuronal Boundary
Detection.

74

[16] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional Net-
works for Semantic Segmentation. nov 2014.

[17] D.G. Lowe. Object recognition from local scale-invariant features. In Proceedings
of the Seventh IEEE International Conference on Computer Vision, pages 1150–
1157 vol.2. IEEE, 1999.

[18] Lukasz Mielańczyk, Natalia Matysiak, Olesya Klymenko, and Romuald Wojnicz.
Transmission Electron Microscopy of Biological Samples. In The Transmission
Electron Microscope - Theory and Applications. InTech, sep 2015.

[19] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-Net: Fully Con-
volutional Neural Networks for Volumetric Medical Image Segmentation. arXiv
preprint arXiv:1606.04797, pages 1–11, 2016.

[20] Jeffrey P Nguyen, Frederick B Shipley, Ashley N Linder, George S Plummer,
Mochi Liu, Sagar U Setru, Joshua W Shaevitz, and Andrew M Leifer. Whole-
brain calcium imaging with cellular resolution in freely behaving Caenorhabditis
elegans. Proceedings of the National Academy of Sciences of the United States
of America, (9):33, 2015.

[21] Seung Wook Oh, Julie A. Harris, Lydia Ng, Brent Winslow, Nicholas Cain,
Stefan Mihalas, Quanxin Wang, Chris Lau, Leonard Kuan, Alex M. Henry,
Marty T. Mortrud, Benjamin Ouellette, Thuc Nghi Nguyen, Staci A. Sorensen,
Clifford R. Slaughterbeck, Wayne Wakeman, Yang Li, David Feng, Anh Ho, Eric
Nicholas, Karla E. Hirokawa, Phillip Bohn, Kevin M. Joines, Hanchuan Peng,
Michael J. Hawrylycz, John W. Phillips, John G. Hohmann, Paul Wohnoutka,
Charles R. Gerfen, Christof Koch, Amy Bernard, Chinh Dang, Allan R. Jones,
and Hongkui Zeng. A mesoscale connectome of the mouse brain. Nature,
508(7495):207–214, 2014.

[22] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. may 2015.

[23] Srinivas C Turaga, Joseph F Murray, Viren Jain, Fabian Roth, Moritz Helm-
staedter, Kevin Briggman, Winfried Denk, and H Sebastian Seung. Convolu-
tional networks can learn to generate affinity graphs for image segmentation.
Neural computation, 22(2):511–538, 2010.

[24] J G White, E. Southgate, J N Thomson, and S. Brenner. The structure of the
nervous system of the nematode Caenorhabditis elegans. Philosophical Trans-
actions of the Royal Society of London, 314(1165):1–340, 1986.

75

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Overview of Contributions
	1.2 Motivation
	1.3 Related Work
	1.3.1 Connectomics
	1.3.2 Image Segmentation
	1.3.3 EM Segmentation

	1.4 EM Segmentation Pipeline
	1.4.1 Image Acquisition
	1.4.2 Preprocessing
	1.4.3 Image Transformation
	1.4.4 Postprocessing
	1.4.5 Segmentation/Downstream Processing

	2 The DeepSeg Framework
	2.1 Overview
	2.2 Pipeline Specification
	2.3 Handling Diverse Datasets and Label Types
	2.4 Dataset Sampling
	2.4.1 Augmentation
	2.4.2 Parallelization

	2.5 Preprocessing
	2.6 Image Transformation
	2.6.1 Model Definition
	2.6.2 Model Training

	2.7 Postprocessing
	2.8 Ensembling
	2.9 GPU Acceleration and Portability

	3 2D Segmentation
	3.1 Task Definition
	3.2 Evaluation Metrics
	3.3 Models
	3.4 Dataset
	3.5 Training
	3.6 Results

	4 3D Segmentation
	4.1 Task Definition
	4.2 Evaluation Metrics
	4.3 Models
	4.4 Dataset
	4.5 Training
	4.6 Results

	5 Alignment
	5.1 Task Definition
	5.2 Evaluation Metrics
	5.3 Models
	5.4 Dataset
	5.5 Training
	5.6 Results

	6 Conclusion
	A Metric Definitions
	A.1 Pixel Error
	A.2 Rand Score
	A.3 Cross Correlation
	A.3.1 Smoothed Version

	Bibliography

