Benjamin Eisner

Curriculum Vitae

CONTACT Information Carnegie Mellon University Pittsburgh, PA 15232 Email: Site: bae is ner@and rew.cmu.edu

Site: www.beisner.me

RESEARCH INTERESTS EDUCATION Learning for manipulation, deep reinforcement learning, 3D perception

Carnegie Mellon University, Pittsburgh, Pennsylvania USA

August 2020 -

Ph.D. in Robotics, Robotics Institute - School of Computer Science

Advisor: David Held

GPA: 4.04

Coursework: Intermediate Stats (36-705), Computer Vision (16-720), Kinematics & Dynamics (16-711), Deep RL for Robotics (16-881), Advanced ML (10-715/10-716), 3D Learning (16-889)

Princeton University, Princeton, New Jersey USA

Sept. 2013 - Jun. 2017

Bachelor of Science in Engineering, Computer Science

Graduated with High Honors (Magna Cum Laude)

GPA: 3.51 / Departmental GPA: 3.64

Thesis: "Deep Learning methods for 3D segmentation of neural tissue in EM images"

Advisor: Sebastian Seung

University College London, London UK

Jan. 2016 - Jun. 2016

Affiliate Student in Computer Science

EXPERIENCE

DeepMind, London, UK

July 2022 - Nov. 2022

Research Scientist Intern - Visual Learning for Manipulation

Collaborators: Jon Scholz, Yi Yang, Todor Davchev, Mel Vecerik

- Researched ways to incorporate 3D visual inductive biases into large-scale robot learning systems.
- Developed a provably SE(3)-Equivariant architecutre for learning relative object placement tasks from demonstrations.
- Published the resulting manuscript at ICLR 2024.

Samsung AI Center, New York, New York USA

Nov. 2018 - Aug. 2020

Machine Learning Research Engineer

Advisors: Daniel Lee, Sebastian Seung, Larry Jackel

- Developed novel deep reinforcement learning algorithms for exploration in sparse environments and improved training stability, leading to a conference paper (IJCAI-PRICAI 2020) and a workshop paper (ICML 2019).
- Collaborated on a project that fused traditional planning with deep learning to learn diverse manipulation behaviors, resulting two publications (including IROS 2019).
- Designed a complete system for robotic manipulation using the Kinova Gen3 arm, as well as low-level drivers for the RealSense camera, a dynamic vision sensor, and Syntouch touch sensors.

Google, New York, New York USA

Sept. 2017 - Nov. 2018

Software Engineer (L3 & L4) - Geo Data

- Led an organization-wide effort to test how massive data changes affected the Google Maps API.
- Developed a workflow management system for simulating world-scale launches for Google Maps and Knowledge Graph.
- Consistently managed tens of simultaneous experiments that processed petabytes of data across thousands of nodes, enabling major org-wide launches.

Princeton University, Princeton, New Jersey USA

Jan. 2015 - May 2017

Lab Teaching Assistant

Machine Reading Lab @ UCL, London UK

Jan. 2016 - Nov. 2016

Research Intern

Advisors: Sebastian Riedel, Tim Rocktaschel

- Researched ways to learn embeddings for new tokens based only on short, natural language descriptions, leading to a workshop publication at EMNLP 2016.
- Demonstrated quantitative improvements on downstream NLP tasks (i.e. Twitter Sentiment Classification) using learned Emoji embeddings.

Google, Kirkland, Washington USA

Jun. 2016 - Sept. 2016

Software Engineering Intern

Microsoft, Redmond, Washington USA

Jun. 2015 - Sept. 2015

Software Engineering Intern

Contactive, New York, New York USA

Jun. 2014 - Dec. 2014

Software Engineering Intern

Konica Minolta Medical Imaging, Wayne, New Jersey USA

Jul. 2013 - Aug. 2013

Software Development Intern

Honors and Awards Best Paper Finalist, RSS 2022

2022

NSF Graduate Research Fellowship

2020 - present

High Honors, Department of Computer Science, Princeton University

2017

2017

Best Paper, Social NLP Workshop at EMNLP 2016 2016

National Merit Scholar

Elected to Sigma Xi

2013

Publications

2024

Eisner, B., Yang, Y., Davchev, T., Vecerik, M., Scholz, J., & Held, D. (2024). Deep SE(3)-Equivariant Geometric Reasoning for Precise Placement Tasks. ICLR 2024. https://openreview.net/forum?id=2inBuwTyL2

2023

Zhang, H., Eisner, B., Held, D. (2023). FlowBot++: Learning Generalized Articulated Objects Manipulation via Articulation Projection. CoRL 2023. https://sites.google.com/view/flowbotpp/home

Qureshi, M. N., **Eisner**, **B.**, Held, D. (2023). On Time-Indexing as Inductive Bias in Deep RL for Sequential Manipulation Tasks. **LmMbMG Workshop @ IROS 2023**.

2022

Pan, C.*, Okorn, B.*, Zhang, H.*, **Eisner, B.***, Held, D. (2022). TAX-Pose: Task-Specific Cross-Pose Estimation for Robot Manipulation. **CoRL 2022**. https://sites.google.com/view/tax-pose/home

Eisner, B.*, Zhang, H.*, Held, D. (2022). FlowBot3D: Learning 3D Articulation Flow to Manipulate Articulated Objects. Best Paper Finalist, RSS 2022. https://sites.google.com/view/articulated-flowbot-3d

Qureshi, M. N., **Eisner**, **B.**, Held, D. (2022). Deep Sequenced Linear Dynamical Systems for Manipulation Policy Learning. **NeurIPS 2022 Workshop**. https://sites.google.com/view/deep-sequenced-lds

Narasimhan, G., Zhang, K., Eisner, B., Lin, X., & Held, D. (2022) Self-supervised Transparent Liquid Segmentation for Robotic Pouring. ICRA 2022. https://sites.google.com/view/transparentliquidpouring

2021

Yang, D., Tosun, T., **Eisner, B.**, Isler, V., & Lee, D. (2021). Robotic Grasping through Combined image-Based Grasp Proposal and 3D Reconstruction. **ICRA 2021**. https://arxiv.org/abs/2003.01649

2020

Simmons-Edler, R., Eisner, B., Yang, D., Bisulco, A., Mitchell, E., Seung, S., & Lee, D. (2020). Reward Prediction Error as an Exploration Objective in Deep RL. International Joint Conference on Artificial Intelligence 2020 (IJCAI-PRICAI2020). https://arxiv.org/abs/1906.08189

2019

Tosun, T., Mitchell, E., **Eisner, B.**, Huh, J., Lee, B., Lee, D., ... & Lee, D. (2019). Pixels to Plans: Learning Non-Prehensile Manipulation by Imitating a Planner. **IROS 2019**. https://arxiv.org/abs/1904.03260

Simmons-Edler, R.*, **Eisner, B.***, Mitchell, E.*, Seung, S., & Lee, D. (2019). Q-Learning for Continuous Actions with Cross-Entropy Guided Policies. **RL4RealLife Workshop, ICML 2019**. https://arxiv.org/abs/1903.10605

2016

Eisner, B., Rocktäschel, T., Augenstein, I., Bošnjak, M., & Riedel, S. (2016). emoji2vec: Learning emoji representations from their description. Best Paper, SocialNLP Workshop, EMNLP 2016. https://arxiv.org/abs/1609.08359

Presentations	FlowBot3D: Learning 3D Articulation Flow to Manipulate Articulated Objects Long Oral, Best Paper Finalist, RSS 2022	2022
	Mapping Your Brain with Deep Learning Internal talk at Google NYC	2017
	emoji2vec: Learning emoji representations from their description. SocialNLP Workshop at EMNLP 2016	2016